Fractional Integro-differential Equations for Electromagnetic Waves in Dielectric Media
نویسنده
چکیده
We prove that the electromagnetic fields in dielectric media whose susceptibility follows a fractional powerlaw dependence in a wide frequency range can be described by differential equations with time derivatives of noninteger order. We obtain fractional integro-differential equations for electromagnetic waves in a dielectric. The electromagnetic fields in dielectrics demonstrate a fractional power-law relaxation. The fractional integro-differential equations for electromagnetic waves are common to a wide class of dielectric media regardless of the type of physical structure, the chemical composition, or the nature of the polarizing species (dipoles, electrons, or ions).
منابع مشابه
Universal electromagnetic waves in dielectric
The dielectric susceptibility of a wide class of dielectric materials follows, over extended frequency ranges, a fractional power-law frequency dependence that is called the ‘universal’ response. The electromagnetic fields in such dielectric media are described by fractional differential equations with time derivatives of non-integer order. An exact solution of the fractional equations for a ma...
متن کاملFractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملOptimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کامل